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We present an improved flexure linkage design for removing underconstraint in a double parallelogram
linear flexural mechanism. This new linkage alleviates many of the problems associated with current linkage
design solutions such as static and dynamic performance losses and increased footprint. The improvements of
the new linkage design will enable wider adoption of underconstraint eliminating (UE) linkages, especially in
the design of linear flexural bearings. Comparisons are provided between the new linkage design and existing
UE designs over a range of features including footprint, dynamics and kinematics. A nested linkage design is
shown through Finite Element Analysis (FEA) and experimental measurement to work as predicted in
selectively eliminating the underconstrained Degree-of-Freedom (DOF) in double parallelogram linear flexure
bearings. The improved bearing shows an 11x gain in the resonance frequency and 134x gain in static
stiffness of the underconstrained DOF, as designed. Analytical expressions are presented for designers to
calculate the linear performance of the nested underconstraint eliminator linkage (average error <5%). The

concept presented in this paper is applied to an analogous double-nested rotary flexure design.
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1. Introduction

The intent of this work is to improve the linkage mechanism that selectively removes the
underconstraint in double parallelogram (DP) linear flexure bearings, without sacrificing the benefits of the
flexural bearing. Existing linkage design solutions [1-3] present significant tradeoffs with a range of
disadvantages including asymmetry, static and dynamic performance losses, increased bearing footprint,
parasitic kinematic error, and design coupling, all of which limit the applicability of the underconstraint
eliminator (UE) designs. An improved nested linkage mechanism is presented as shown in Fig. 1 which is
able to provide similar UE performance without many of these limitations. This results in increases in range,
dynamic stability, and bandwidth, in conjunction with reductions in footprint and parasitic kinematic error.
The improved linkage design can be used in a wider range of machine designs than existing UEs, and can be

used to replace existing UE linkages, resulting in performance increases. Detailed models are provided for

the small displacement behaviors as well as dynamics.

Underconstraint —
Eliminator Intermediate Stage

Final Stage

Fig. 1. Flexure DP with nested UE linkage. This linkage selectively removes the underconstraint
inherent in the DP design by linking the motion of the intermediate and final stage.

Flexure bearings are often used in precision machine design [4—6] for many reasons, including i) fine
resolution as friction is zero and hysteresis is minimal, ii) no backlash, iii) no power draw due to the passive

nature of the components, iv) the possibility of achieving complex kinematics [7,8], v) ease of integration of



low-cost high performance sensing [9], vi) largely linear elastomechanics, and vii) ease of fabrication at low-
cost due to their often monolithic structure. Flexures also have significant disadvantages, one of which is

their limited range of motion [6].

Stacked stage designs, utilizing flexure bearings in series, are a common solution to the range
limitation [4,6]. One such design, also called a double parallelogram flexure bearing, is shown in Fig. 2a,
which is two four-bar flexure parallelograms in series to double the range of the linear bearing. This linear

bearing geometry will be the focus of the paper.
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Fig. 2. a) DP linear bearing with components labeled. Possible motions for the structure are shown
in an equivalent linkage model in b). The solid arrows show the nominal translational motion, with
the kinematic errors canceled by geometry reversal. The dotted arrows show the y-axis DOF for
the structure observed at large displacements, which is revealed as a drop in axial stiffness.

Final Stage
a) b)

DP flexures are used in many instances, including single or multi-axis precision positioning stages [10—
15], linear bearing elements in macroscale machines [6,16—19], or in MEMS devices [3,11,20-28]. These
elements have received significant attention and analysis in literature, several noteworthy examples of which

are suggested here for the reader’s further study [1,6,10,17,19,29-31].

DP flexure bearings have several advantages and disadvantages which must be considered during
design. The advantages of the serial stages include increased range and reduced parasitic kinematic errors.
The arcuate parasitic kinematics errors of each of the flexure bearings can be cancelled out via geometry
reversal to generate nearly ideal linear motion. This cancellation requires that the intermediate stage traverse
approximately half the final stage displacement, in phase with the final stage [1,6,10,17,19,29]. The

cancellation effect is shown in the effective linkage model shown in Fig. 2b with the solid arrows.

There are several disadvantages to serial parallelogram stages, including dynamic and axial stiffness

issues. This is because the intermediate stage possesses the same translational DOF as the final stage [6].



The redundant DOF causes the intermediate stage to be underconstrained because it is free to move even

when the final stage is held fixed relative to the ground [5,6,10,19,32].

The underconstraint appears as an extra, uncontrolled DOF of the bearing [6,19]. The
underconstrained intermediate stage DOF has a relatively low resonance frequency which is generally on the
same scale as the main translational DOF resonance of the main stage, due to the similar scale of both DOF
stiffnesses and (typically) the masses. This underconstrained resonance is associated with collocated
dynamics, where the sensor and actuator are on a single rigid body, while a separate body in the system is able
to resonate [33]. This generates stability issues, leading to difficulty in precise control, especially when the
collocated dynamics are close to the cross-over frequency, as is typically found with the underconstrained

intermediate stage [14,15].

The underconstraint enables a y-direction DOF for the final stage at large displacements as shown in
Fig. 2b via the dotted arrows. The intermediate stage slides back along its arcuate trajectory towards
equilibrium, allowing the final stage to translate in the y-direction [1,10,31]. The motion of the intermediate
and final stages are no longer linked by a 2:1 ratio in this vertical DOF, as they are for the main translational
DOF. The y-direction corresponds to axial loading on the flexures, which is a high-stiffness degree-of-
constraint at low displacements. The axial stiffness thus drops dramatically at large displacements

[1,2,10,23,30], due to the allowed motion shown by the dotted arrows.

2. Background

A review is presented of previous design solutions for the removal of underconstraint in flexure DP
bearings. R.V. Jones suggested a multi-body lever linkage solution to this issue in 1956 [29], based on a
suggestion by Plainevaux [34,35] of coupling the intermediate and final stage via a gearing system. Smith
[36] describes a modification of Jones’ design in which the sliding contacts are replaced with flexure joints,
but retains an apparently assembled pin joint for linking the lever arm to ground. All of these designs remove
underconstraint, however they introduce several drawbacks which can negate some of the benefits of flexural
bearings. These designs utilize non-flexural bearings which introduce several acknowledged problems [29]
including requiring assembly, generating an asymmetric effect, and introducing friction. The problems were

solved via later UE designs, as described below, which utilize only flexural joints and thus regain the benefits



of the flexural bearing in terms of friction and fine motion control. This paper considers a usable UE design
as one which will not negate the benefit of flexural bearings. The Jones, Plainevaux and Smith designs will

thus not be included in further comparison.

Many designs that do not meet the criteria of being usable UEs have been suggested to improve the
performance of the DP linear bearing, and several (but by no means all) are noted here for illustrative
purposes. These include combining the DP with angled flexure bearings [24,26], pre-bending the flexures
[20,26], linking the intermediate stages of symmetric bearing sets [25], angling 4-bar beams out-of plane [37],
or introducing a lever arm held in place entirely with parallel blades [38]. While these designs address some
of the symptoms of underconstraint, they either do not remove all of the underconstrained DOFs [20,24-26],
or they introduce new DOFs to the final stage [37,38]. Thus these designs retain at least one more DOF
beyond the single desired translational DOF, which is the underlying problem we seek to resolve. This paper
focuses on comparing designs which fully remove the underconstraint in the flexural linear bearing, so the

abovementioned papers will not be included in further comparison.
2.1.Double tilted-beam flexure bearing

The double tilted-beam flexure bearing design, shown in Fig. 3a, has been suggested as one means of
removing underconstraint via angling the flexure beams, [1,3,24,26]. This design adjusts each of the beams
off from vertical (y-direction) by an equal angle to create two instant centers, one below and one above the
bearing. The intermediate stage of this design is no longer underconstrained because each flexure bearing
module possesses non-redundant instant center rotational DOFs. In the case where multiple bearing elements
are desired/allowed, this bearing provides the additional benefit that the underconstraint elimination in this
mechanism is all done with the four existing flexures. The multiple bearing requirement is due to the need to

negate the second DOF intrinsic to the bearing design, as shown in Fig. 3 and explained below.



a)

Fig. 3. a) Double tilted-beam linear bearing shown on left with instant centers identified. The two
possible motions for the structure are shown in equivalent linkage models in b). The solid arrows
show the nominal translational motion where the final stage does not rotate. Note that the
kinematic errors are not canceled in this translation. The dotted arrows show the extra DOF of the
structure where the final stage rotates without translating.

Such a design poses several disadvantages however, including design coupling, altered DOF and
parasitic kinematics. The performance of the main translational DOF is now coupled with the performance of
the UE from an axiomatic design perspective [39] via angling of the beams. The coupling of multiple
functional requirements to the same design parameters (tilt angle) results in a reduced design space. The main
translational elastomechanics are altered by angling the beams, resulting in increased stiffness [1] due to the
combined translation and rotation in the beams. The outer set of flexures in Fig. 3a will be further loaded by
the intermediate stage rotation, increasing stress buildup [3], and thus reducing total bearing range. The final
stage shows an extra DOF in the tilted-beam design as shown in the equivalent linkage model in Fig. 3b. The
final stage can either move along an arcuate path as shown by the solid arrows or rotate as shown by the
dotted arrows. This design returns to being a 1DOF translational bearing only if the rotation is constrained
[1]. To do so requires multiple structures, such as using two of these bearings side-by-side or end-to-end.
Full bearing performance thus requires at least approximately twice the footprint of a single bearing. Finally,
the parasitic kinematic errors are not canceled [1] in this design. The two bars in series do not carry out
equivalent motions, shown in Fig. 3b by the solid arrows. The first bar rotates, while the second translates.
Thus the final stage follows an arcuate path whose radius is the separation between the two instant centers,

and the stage motion is left with a cosine-like y-direction parasitic error motion at large displacement [1].



2.2.Exact constraint folded flexure with external linkage

The exact constraint folded flexure bearing design, shown in Fig. 4a, has also been suggested as a
means of removing underconstraint, [2,11,19,31,37,40,41]. This design is based on the assembled lever arm
suggested by Jones [29], and utilizes an external linkage to tie the kinematics of the intermediate stage to the
final stage. The rigid linkage rotates around an instant center above the bearing, shown in the equivalent
linkage model in Fig 4b. The distance from this instant center to each of the stages sets the allowed ratio of
motion between the stages. This ratio is fixed at a 2:1 ratio to ensure that the intermediate stage translates half
as far as the final stage, as shown by the solid arrows in Fig. 4b, thus removing the underconstrained DOF but

not interfering with the kinematics of the main translational DOF.
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Fig. 4. a) Exact constraint folded flexure utilizing an external linkage. The possible motion for the
structure is shown in the equivalent linkage model in b). The solid arrows show the nominal
translational motion, which is equivalent to the DP flexure bearing alone.

The external linkage design possesses several drawbacks including degraded dynamics, asymmetry,
and increased footprint. The external linkage can significantly alter the dynamics of the main translational
DOF via the asymmetric layout and the added inertia [6,17]. The higher dynamics are also impacted by this
extra mass. The asymmetric layout of the bearing increases its thermal sensitivity [6,17]. Finally, the

inclusion of the large linkage roughly doubles the required bearing footprint.



3. Nested Linkage Designs

3.1.Linear Bearing Design

The new design presented here draws upon the design of the external linkage exact constraint folded
flexure described above. The modification is intended to fix the main drawbacks of the external linkage
design- dynamics, symmetry and footprint. The instant center of the added linkage is placed along the plane
of symmetry of the structure, as shown in Fig. 5a, which passes through the middle of the device. This
placement improves the dynamics and symmetry of the structure. The linkage guiding flexures (labeled 2 in
Fig. 5a) do not need to extend all the way to the instant center- instead both these flexures and the linkage
itself can be designed to nest within the central dead-space in the double-parallelogram. This reduces
footprint and inertia for the linkage. The linkage is shaped in a triangular fashion with hollowed center to
maximize the stiffness of the body with the least additional mass. It is attached to each of the stages with sets
of blade flexures (labeled 1 in Fig. 5a) axially aligned to the final and intermediate stage DOF along the x-
axis. These blade flexures are included symmetrically to avoid buckling, thermal sensitivity and dynamic

issues. The type 1 blade flexures may be replaced with wire flexures to avoid overconstraining the structure.

a) b)

Fig. 5. a) Exact constraint folded flexure design with an improved, nested linkage for UE. The
possible motion for the structure is shown in the equivalent linkage model in b). The solid arrows
show the nominal translational motion, which is equivalent to the DP flexure bearing alone.

The nested linkage must be able to access both stages and the ground in order to kinematically link the
stages. The point of contact of the linkage to each of the stages may be at any height, it does not need to be at
the surface defined by the end of the four main flexures (labeled m in Fig. 5a). By moving these points of

contact closer to one another, the location of the instant center for the linkage is shifted. The location of the



instant center sets the angle at which the type 2 flexures (labeled 2 in Fig. 5a) contact the linkage, and thus
how stiff they are when resisting the translational DOF of the intermediate stage. The type 2 flexures will
need to displace roughly as much as the main flexures. These type 2 flexures are typically thinner than the
type m flexures in order to avoid significantly altering the main translational DOF, so they see lower stresses
than the main type m flexures. This means that the addition of the UE will not typically change the range of

the overall flexure bearing.

3.2.Rotary Analog Design

The UE linkage concept is extensible to different flexure mechanisms that achieve other kinds of
motions. A double nested rotational flexure analog to the translational version presented previously is shown
in Fig. 6a. This compact flexure topology can enable large rotational motion in a similar way to how the
double parallelogram flexure bearing in Fig. 2 achieves pure translational motion. If the intermediate stage
shown in Fig. 6a were grounded, the final stage could still rotate about the axis shown as a red dot with a
circular arrow, but this axis of rotation would immediately begin to drift left or right depending on the
direction the stage were rotated for finite deformations. To eliminate this unwanted parasitic error effect while
dramatically increasing the mechanism’s rotational range without increasing its overall footprint, the
intermediate stage shown in Fig. 6a should be free to rotate half the number of radians as the final stage while
the labeled ground is held fixed as shown. The necessary lengths and orientations of the four flexure blades to
maintain the location of the intended rotational axis over finite rotations (for when the intermediate stage
rotates half the radians as the final stage) can be determined using the mathematics provided by Van Eijk [19].
The system retains an underconstrained DOF even after the flexure lengths are correctly chosen. The
underconstraint causes many of the same dynamic problems discussed previously for the translational analog
mechanism in Fig. 2. This can be solved by inserting an analogous symmetric UE linkage similar to the one
shown in Fig. 5. Whereas the UE linkage in Fig. 5 rotates to ensure that its mechanism’s intermediate stage
translates half as much as its final stage, the UE linkage analog in Fig. 6b translates to ensure that its
mechanism’s intermediate stage rotates half as much as the final stage. Note that as long as the two distances
labeled # in Fig. 6b are equal, the mechanism’s intermediate stage will rotate ~d/2h radians as its final stage
rotates ~d/h radians where d is the distance the UE linkage translates (Fig. 6c). The vertical flexure bearings

only permit this linkage to translate horizontally as shown by the arrow in Fig. 6c.
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Fig. 6. Double nested rotary flexure a), similar flexure but with a UE linkage inserted b), the final
stage is forced to rotate twice as many radians as the intermediate stage in the same direction c).

4. Comparison

The three linear bearing designs described above, 1) tilted-beam, ii) external linkage, and iii) nested
linkage, all eliminate the underconstraint in the DP flexure bearing. Such UE designs increase the displaced
axial stiffness (y-direction) of the final stage [1,2] and raise the resonance frequency associated with the
underconstrained DOF. The secondary effects of these designs differ, however, as shown in Table 1. Table 1
is included as a designer reference to summarize the general strengths and weaknesses of the three UE designs
that have been discussed in detail in the previous sections. This comparison is explicitly carried out
independently of a particular design or situation and as such is intended as a qualitative guide for concept

level design selection.

Table 1. Comparison of UE designs

Tilted- External Nested
Beam Linkage  Linkage

Symmetry + - +
Dynamics + - +
Range - + +
Footprint - - +
Kinematics - + +
Design Decoupling - + +

The three designs are standardized in this comparison such that they all equally provide a single linear
DOF at the final stage, and utilize identical main bearing flexure geometry. This is to ensure equality in the
comparison. The double tilted-beam design must be used in duplicate to do so, resulting in a larger footprint

as described previously. Symmetry is maintained and inertia is low for this design due to its simplicity.



These aid the dynamics via minimizing unwanted modes as well as keeping the bandwidth as high as
possible. The range is reduced and the design is coupled due to the beam angle as described above. Finally,
the main translational DOF will have parasitic kinematics as shown in Fig. 3b. The external linkage design
breaks the bearing symmetry, and raises the footprint. The increased mass combined with the asymmetric
layout impact the dynamics. The range, kinematics, and design of the main DOF are effectively unaltered by
the external linkage design. The improved nested linkage design maintains symmetry, low inertia and
footprint via a small hollow linkage nested within the DP. The range, kinematics, and design of the main
DOF are also effectively unaltered by the nested linkage design. The nested linkage design has improved

performance over the other two common UE designs.

5. Small Displacement Analysis

The equations required to calculate the linear, small displacement static and dynamic performance of
the underconstrained DOF are described below. A linear domain analysis of static and dynamic performance
is utilized below to provide insight into the capability of the new UE nested linkage design to remove
underconstraint. The derivation and implications of the large displacement analysis lies outside the scope of

this paper and so will be published separately.
5.1.Final Stage Motion

The linear stiffness, k; of the final stage along the main x-axis translational DOF is derived through
energy analysis. The energy stored via x-axis translation motion, Ey; is calculated by summing the
contributions of each of the flexures as shown in Eq. (1), where r; and r; are the lever arm for the type 1 and 2
flexures, respectively, d is the separation between the linkage points to the stages, xyis the x-direction motion
of the final stage, and 6, is the rotation of the UE linkage around its instant center. The geometric variables
are indicated in Fig. 5. E, [ and L are the Young’s modulus, second moment of area, and length respectively
of the main (m) flexures, type 1 flexures (/), and type 2 flexures (2). The terms kj describe the j-type
flexures’ (/ is type 1, 2 is type 2) clamped-free moment-to-rotation stiffness at the free end. The terms k;
describe the j-type flexures’ clamped-guided transverse force-to-displacement stiffness at the guided end. The
terms k. describe the j-type flexures’ clamped-free moment-to-displacement stiffness at the free end. The

bodies are assumed to be rigid for this analysis, motions are assumed to occur in a 2:1 (final to intermediate



stage) ratio, all displacements are assumed to be small, all energy storage along DOC is considered to be

negligible, and Euler stiffnesses are used for the beams.
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The stiffness is calculated by finding the derivative of the energy with respect to x-axis motion on the

final stage, as shown in Eq. (2).
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The first term on the right hand side contains the contribution from the main flexural DP, labelled type
m. The second term describes the combined rotation/translation of the four type 1 flexures, while the third
term describes the combined rotation/translation of the two type 2 flexures. The term k. captures the effect

of the UE on the final stage DOF stiffness.

The resonance of the final stage, w, is shown in Eq. (3), where m;, is the mass of the final stage m; is
the mass of the intermediate stage, and m,, is the mass of the UE linkage. The intermediate stage mass is
scaled down via a 1:2 transmission ratio. The UE linkage is modeled as a point mass halfway between the

intermediate and final stage with a 3:4 transmission ratio.

W 1 9 (3)



5.2.Intermediate Stage Motion

The stiffness, k;, for the intermediate stage x-axis motion (a DOF prior to inclusion of the UE linkage)
requires a more complex derivation than that done for the final stage. The inclusion of the UE linkage shifts
the intermediate stage motion to occur along a DOC, where rigid body displacement does not follow the
simple 2:1 ratio. The flexures are deliberately ‘jammed’ in this scenario, producing much higher forces, so a

free-body-diagram based analysis is more effective than the energy method.

The analysis for the intermediate stage x-axis stiffness is carried out in two steps. First, structural
motions are related to the intermediate stage x-axis displacement, x;, Two main motions are considered: the
UE linkage rotation, 6,,, around the instant center formed by the type 2 flexures, and the UE linkage
translation, x,., along the x-axis. Second, the intermediate stage stiffness is derived from these structural
motions. The bodies are assumed to be rigid for this analysis, all displacements are assumed to be small, the
effects of transverse/moment stiffnesses are considered to be negligible, and Euler stiffnesses are used for the
beams. The assumption of axial stiffness dominance over transverse/moment stiffnesses was later confirmed

with a full analysis that showed this assumption generated <0.01% error.

The moment and force balance for the UE linkage were derived as shown in Eq. (4), where d; is the y-
axis separation between the end of the type 2 flexures and the ends of the top type 1 flexures, and 6, is the
angle of the type 2 flexures off of vertical. The moment balance was carried out around the instant center

formed by the type 2 flexures.
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The subscripts are used to indicate the type 2 flexures (2) as well as to separate the type 1 flexures into
two sets: the top set (/7) located at distance d from the instant center, and the bottom set (/2) located at
distance 2d from the instant center, as shown in Fig. 5. The two sets encounter different deformations in the
assumed rigid body of the UE linkage, as will be explained in the rigid body correction section. The terms £,

describe the p-type flexures (/7 is type 1 top set, /2 is type 1 bottom set, 2 is type 2 set) axial force-to-



displacement stiffness. These terms are composed of the flexure axial stiffness in parallel with a rigid body

relaxation stiffness, ,,, unique for each flexure set, to account for the failure of the rigid body assumption.

The force and moment balance equations in Eq. (5) are used to calculate 6,, and x,,, as functions of x;.
The UE coordinates are linear functions of the intermediate stage motion, so non-dimensional ratios o, and ay

are used as shown in Eq. (5).
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The overall structural stiffness of the intermediate stage in the x-axis can now be determined through
the known displacement relationships. This is done via an x-axis force summation on the intermediate stage,
which combines the main flexures with the type 11 flexures, where F, is the load applied on the intermediate

stage along the x-axis as shown in Eq. (6).
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The intermediate stage stiffness is extracted from the force summation and Eq. (5), as shown in Eq. (6).
This term can be visualized as the main flexures in parallel with the only-UE stiffness, &;,., which is itself
composed of two stiffnesses in parallel, each associated with a separate UE motion. The first UE motion is as
follows: if k;;,~k;>=k;, and k;./k;.>>1 then the type 1 flexures are essentially infinitely stiff along their axis
and the UE linkage is thus only able to rotate around the center of stiffness of the type 12 flexure set. The
type 2 flexures are scaled via a [2sin(6,)]” transmission due to their angle of , off of vertical. The described
motion is captured in Eq. (6) via the &, term. The second UE motion is as follows: if k,,/k;,>>1 then the type
2 flexures are essentially infinitely stiff along their axis and the UE linkage is thus only able to rotate around

the instant center formed by the type 2 flexure set. The type 11 and 12 flexure sets are in series, with the UE



linkage acting as a lever with a 2 transmission for the 12 flexures. The described motion is captured in Eq.

(6) via the k;;, and k,,, terms.

The resonance of the intermediate stage, @,;, is shown in Eq. (7). This expression assumes that the
final stage mass is locked in place for simplicity. The UE linkage is again modeled as a point mass halfway
between the intermediate and final stage whose displacement normalized to x; is (o,+3/2dag). This
transmission shifts from 1:2 if k,,/k;,<<l1, to 3:10 if k,,/k;,>>1, but in general it lies midway between these

values.

()

5.3.Rigid Body Correction

The rigid body assumption proved to be incorrect when the intermediate stage motion stiffness was
analyzed due to the hollow linkage shape and high DOC loading. This section provides the modifications to
the expression necessary to account for the rigid body deformation. All of this is contained in the &, terms,
shown in Eq. (4). The rigid body assumption of k,,—o0 was initially used, resulting in a predicted
k;=6.70MN/m which closely matches FEA results (6.68MN/m) when the rigid bodies are set to have a
Young’s modulus that is 10'* times the flexure modulus. This value is significantly above the measured and
FEA values (=<5MN/m) as shown in Table 2. The deformation of the bodies can clearly not be ignored as

while the equations accurately predict ideal rigid body motion, they are off by 25% for the real system.
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Fig. 7. FEA of the nested UE linkage design undergoing loading along the former DOF of the
intermediate stage. A 1IN load is applied in the x-axis on the intermediate stage (red arrow), while
the final stage and grounds are held in place. The UE linkage rigid body is warped by the loading,
with the top horizontal beam in the linkage forming an ‘S’ shape, and both of the side beams
bowing in the same direction. The motion is amplified to clearly indicate the warping.

The dominant deformation was observed to be a warping of the triangular UE linkage, as shown via
FEA in Fig. 7. The horizontal bar of the UE linkage deforms in an S pattern. For the remainder of the
analysis, this beam will be split in half via the plane of symmetry shown in Fig. 5, and the half beam indicated
with the b/ subscript. Both the loading and the linkage are symmetric about the central plane, so the analysis
needs only consider one side. The angled bars of the UE linkage, referred to via the b2 subscript, deform via
bowing. The beams’ end-angle change due to loading, 6,, at the beam intersection points, were found to be
matched as is visible in Fig. 7, so 6, can effectively be used to describe the warping of bl and b2 that occurs

as springs in parallel.

The type 1 and 2 axial forces can be related by a force and moment balance on the UE linkage, as
shown in Eq. (8). Only the axial forces are considered, as with the previous analyses. The moment balance is
carried out around the center of stiffness of the type 12 flexure set. The directions for each of the forces are
adjusted to produce positive magnitudes as only the relative scale of the values is of interest. The resulting

simple ratios of forces are also shown in Eq. (8), all linked back to F,.

ZFX = 2F}1a _2Sin(92)F2a _2F'12a = 0
XM =-2dF,, —4dsin(0,)F, =0 (8)
F,, = (1/2)CSC(92)F11a =csc(6,)F),,



The UE linkage distortion is calculated via the application of the type 2 axial load, F,,. The type 1
flexure forces are interpreted as reaction forces on pinned joints which hold the UE linkage in place. These
two pinned joints are located at the center of stiffness of the type 11 flexures, as well as at the center of
stiffness of the type 12 flexures. The type 2 flexure axial load produces rotation of the beam ends, captured in
the rigid body force-to-rotation stiffness, kg, shown in (9). E, I, L, and 4 are the Young’s modulus, second
moment of area, effective length, and bending direction thickness (in-plane) respectively of the horizontal

rigid body beam (b7) and angled rigid body beam (52).

k — F2a z[zEbllbI +2Eb2lb2J 1
bo
6b Lb] Lb2 d

2b

d,, = h,; sin(0,) + h,, /2 )
L, =(d+d,—h, )tan(0,) - h,,sec(0,) - r,

L, =(d-d,—h, )sec(0,)—hy,[cot(0,) + tan(6,)]

b2 =

The beam rotations occur together, so while their ends are fused to one another they warp at the same
angle and thus the ends store no energy in resisting the warping. The dominant mode is instead captured by
treating the beams as pinned-pinned with a moment applied at their linked end. The applied load is
transformed to a moment via the lever arm, d,,, separating the contact point of the type 2 flexures from the
intersection of the b1-b2 neutral planes. The lever arm is calculated as the normal distance from a line at
angle 6, off the y-axis passing through the extreme corner of the UE linkage, back to the intersection of the
b1-b2 neutral planes. The effective lengths of the two beams are reduced by the end sections where the beams
overlap one-another. The predicted warping stiffness, 270kN/rad, provides a close (<3%) match with FEA

results of 280kN/rad, indicating that the model captures the dominant physics of the warping.

The rigid body warping is captured in the rigid body relaxation stiffnesses, k. Such warping is not a
concern for DOF motions, but has a noticeable effect on DOC motions, based on the scale of flexural
stiffnesses and forces. The rigid body relaxation stiffnesses are explained and defined for each flexure set

below.

The neck area of the UE leading to each of the type 1 flexure sets undergoes deformation during

loading. This appears as a stiffness of about 40MN/m in series with the type 11 flexure (*10MN/m axial



stiffness). The added stiffness covers the region from the end of the type 11 flexure to the intersection of the
bl beam with the central symmetry plane. A 19MN/m stiffness is observed in series with the type 12 flexure
(=10MN/m axial stiffness). The added stiffness here covers the region from the end of the type 12 flexure to
the intersection of the b2 beam with the central symmetry plane. The k,, expressions combine the two
dominant stiffnesses: the shear of the neck region and the UE linkage warping, as shown in Eq. (10), where
G,, A,, and L, are the shear modulus, cross sectional area and length, respectively, of the neck shear region.
d;p and d;, are the lever arms that transform the rigid body warping into axial translation for the type 11 and

type 12 flexures, respectively.

k,,= G4, Dki2sin(92)

2L, dy (10)
ko = G, kism(ez)

2L, d,,

The first term accounts for the shear in the neck region, which is similar for both flexure sets. This
region is typically fairly short, as it need only allow for the machining kerf width and UE rotation. The shear
stiffness term is divided by 2 as the loads paths from both flexures in the set overlap in the neck, resulting in
half the stiffness found by only considering one of the flexures in the set. The second term is the warping
stiffness from F), to 6, of the UE linkage body as described in Eq. (9) transformed from a rotational output to
a translation along the flexure axis by a lever arm. This arm can be related to existing geometry for the type
11 flexure set, where d;;,~d,, however the lever arm for the type 12 flexure set has more design freedom and
can be set to a wide range of values, including =0. F, is replaced by an equivalent axial load function of F;;,

or Fj,,, via Eq. (8).

Equation (10) predicts rigid body relaxation stiffnesses of 41 MN/m for the type 11 flexures and 18
MN/m for the type 12 flexures, both of which are within 5% of FEA values, suggesting the model captures
the dominant physics. The warping stiffness is the dominant term and is approximately 10x lower than the
shear stiffness. This indicates that further improvement is mainly to be found in improving the warping
mode. A topological alteration like the placement of an ‘X’ cross brace in the center gap of the UE linkage
would connect the centers of the bl and b2 beams from opposite sides, centers which move in opposite

directions during the warping.



The arms of the UE linkage undergo deformation along the axis of the type 2 flexures during loading.
This appears as a stiffness of about 20MN/m in series with the type 2 flexure (*6MN/m axial stiffness). The
added stiffness covers the region from the end of the type 2 flexure to the two pinned joints described for Eq.
(9), which are considered the grounding points. The expression for k, combines three stiffnesses: end shear,
truss stretching, and the UE linkage warping, as shown in Eq. (12). The end shear stiffness, k3, is calculated
as shown in Eq. (11), where F is a transverse load applied to the small end of a beam with shear modulus Gj;,
whose length is L,;. The beam cross section, A,;(x), is the product of a constant width, b,;, and a varying
thickness which is a maximum at the base and decreases with distance, x, along the beam at slope cot(6-) until

reaching a minimum of /3, at the free end of the beam.

F F

—=|—d h A =b,.|h, +cot(0,)(L,,—

kys, '[ijA};j(x) x where  4,(x) b3|: bio *+ O 2)( b3 x):l o
G,;b,; cot(6,)

k})j’t = In |:1+ COt(Og)(Lb3/hb30 ):I

The end shear stiffness term mimics the shear of the triangular section where the type 2 flexure anchors
to the UE linkage. Shear was confirmed to be the dominant loading in this region via FEA. The stiffness was
found by integrating the transverse shear over a linearly increasing cross section, which extended about
13mm, at which point beams b1 and b2 separate from one another and end the triangular segment. The type 2

axial load is applied at angle &, off of transverse, which is accounted for by the secant term in Eq. (12).

oy = ks, 520(0,)” U] Ky, SI0(0,)° + Ky, €08(20,)° Uk,
EbIAbI EbZAbZ (12)

k
" (d +d,)tan(0,) "0 (d -d,)sec(0,)

The second term in &, is the truss stiffness. This is derived from a model of the UE linkage where the
bl and b2 beams are treated as trusses with pinned ends at the joint locations described for Eq. (9). The axial
stiffnesses, k;;, and k,, for the bl and b2 beams respectively, far exceed each beam’s transverse and moment
stiffness, so the truss model is effective. The third term in &, is the UE linkage warping stiffness. The
warping angle, 0, of the rigid body is transformed back to an axial translation via the previously defined lever

arm dy,.



The net value of &, is predicted to be about 19MN/m, within 5% of FEA values, suggesting the model
captures the dominant physics. The warping stiffness and the truss stiffness are nearly equivalent, suggesting
that both modes would need to be improved in order to make significant improvements. While the ‘X’

bracing might reduce the warping mode, this would provide little benefit for the truss mode.

The ratio of the k,,-and-flexure combined axial stiffness divided by the flexure-only axial stiffness can
be considered the ‘DOC stiffness efficiency’ figure-of-merit for the rigid body deformation. This ratio
approaches unity via improvements in UE linkage design. Both flexure types 1 and 2 operate with DOC
stiffness efficiencies of about 75%. Further rigidification of the UE linkage may raise this value, however
relatively minor gain is to be had given the tradeoff of increasing mass. The introduction of the UE linkage
raises k; by 44dB (168x) from 40kN/m to 6.7MN/m, while the DOC stiffness efficiency draws this back down
by about 2.4dB (0.75x) from 6.7MN/m to 5.1MN/m. Best design principles thus suggest that there is little
point in adding mass to the UE linkage in an attempt to raise DOC stiffness efficiency when significantly
greater returns may be found by simply directly raising the flexure’s DOC stiffness. This could be done by
increasing the axial stiffness of the type 1 and/or type 2 flexures. The type 2 flexures compose the lowest
stiffness component in the present design. Increasing their axial stiffness would result in the largest
proportional gains in intermediate stage stiffness when the sensitivity of Eq. (6) is considered with respect to

each of the flexure types.

6. Experimental Setup

Meso-scale (30cm x 30cm) DP flexures with and without the nested UE linkage were monolithically
fabricated from 1.27cm thick aluminum using abrasive waterjet cutting. The nested UE linkage was intended
to boost the natural frequency of the translational DOF of the intermediate stage by around 10x with only

minimal (<10%) alterations to the main DOF static and dynamic performance.
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Fig. 8. Flexure DP with nested linkage, attached to optical table. This general setup was used to
capture the static and dynamic properties of the main DOF as well as the underconstrained DOF.

The flexure bearings were anchored to an optical table as shown in Fig. 8, and the static/dynamic
performance of both the final and intermediate stage translational DOFs were measured. Static tests were
performed with weights for loading and Lion Precision capacitance probes for sensing. Dynamic tests were
performed with impulse loading using a small metal tapping probe and the same sensors sampling at 50khz.
The Fourier transform of the impulse response was used to determine the frequency response of the bearing,
assuming the bandwidth of the impulse was well above the bandwidth of interest. This assumption is
validated by the measurements shown in Fig. 9. A second order decaying sinusoid was fit to the capacitance
probe readings of the impulse response in order to determine the resonance frequency. The final stage was

anchored during the intermediate stage measurements.

7. Results

7.1.Small Displacement

The static and dynamic performance of both the main translational DOF and the intermediate stage
translational DOF are shown in Table 2. This was done in order to demonstrate the capability of the nested
linkage UE to remove the underconstrained DOF in double parallel flexure bearings. The DP flexure bearing
as shown in Fig. 2 is compared to a DP bearing with the nested UE linkage as shown in Fig. 5. Measurements
are compared against FEA predictions and theoretical predictions from the equations described previously.
The base was grounded and an x-axis force was applied to the side surface of the final stage for the final stage

DOF analysis. The base and the final stage were grounded and an x-axis force was applied to the side of the



intermediate stage for the intermediate stage DOF analysis, as shown in Fig. 7. Displacement was measured

from the center of the stage.

Table 2. Static and Dynamic Performance of Bearing DOFs

DP DP with nested UE
Measured FEA Theory  Measured FEA Theory  Units

Final Stage DOF
ky 9.76+0.25 9.71 9.98 10.9£1.2 10.5 10.7 kN/m
o 19.1+0.1 20.3 20.6 20.7+0.1 20.9 21.0 Hz

Intermed. Stage DOF

k; 38.3+0.3 38.8 39.9 5130+190 4890 5070 kN/m
Wi 60.4+0.3 67.9 65.8 65043 648 732 Hz
Stiffness Ratio
ki/ky 3.924+0.11 4.00 4.00 471+£55 466 474 -~

Evidence of underconstraint removal is found in the static analysis via the UE-driven increase in the
stiffness ratio ki/kz Relative stiffness can be used to identify DOF [6,10]. Table 2 indicates that the
intermediate stage DOF has been moved from a DOF-scale stiffness ratio of =4 to a DOC scale stiffness ratio
of about 470 [10]. The underconstrained DOF has been effectively removed from the system, and the nested
linkage has thus performed as intended. The main translational DOF shows minimal changes in both static
(12%) and dynamic (8%) performance due to the addition of the nested linkage. The dynamic change is
partially cancelled as both the stiffness and inertia rise. The intermediate stage DOF shows significant
changes in both static (134x) and dynamic (11x) performance, also as desired. The measurements confirm
that the accuracy of both the FEA (max 4.7%, average -2%, standard deviation 2.4%) and the analytical
model (max 4.2%, average 0.86%, standard deviation 2.5%) are sufficient for use as flexural geometry design

tools.
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Fig. 9. The Bode gain plot for the unaugmented DP flexure is compared to that of the DP flexure
with the nested linkage. The intermediate stage resonance has been shifted from 60hz to 650hz,
while the main stage resonance has been changed by only =5%.

The net effect of the nested UE is clearly seen in Fig. 9, where the Bode gain plots for the flexures with
and without the UE are shown. These response plots were generated via the Fourier transform of the impulse
response data. The low frequency gain for both setups was normalized to unity in order to make the charts
directly comparable. The intermediate stage would normally generate a problematic resonance only slightly
above the main translational DOF resonance; however this has been shifted over 10x higher without

significant impact to the dynamics of the main DOF.
7.2.Large Displacement

A second effect of underconstraint on DP bearings, as described in the introduction, is a reduction in
large displacement y-axis stiffness. This effect was analyzed via FEA as a redundant confirmation of the

capabilities of the nested UE design to remove underconstraint.

FEA analysis of the DP and DP with UE bearings were carried out for both force and displacement
control on the final stage. Theory and literature suggest there should be no difference between these two
control methods. The bearing stiffness is commonly parameterized to a controlled displacement [1,25],
however controlled force can be a more accurate model in certain conditions. The high-bandwidth pullin
effects on comb drives will likely occur before the main DOF controller has time to react and hold to a certain
displacement, assuming closed loop control. Both constraints were used in the FEA for comparative

purposes, as shown in Fig. 10. The displacement of the final stage, J, was normalized by the thickness of the



type-m flexures #,,, and represented by X=d/h,,. The FEA was carried out to X=20-30, as the simulations had

difficulty in converging past this scale.
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Fig. 10. Logarithmic plot of axial stiffness vs nondimensional displacement, showing large
displacement effects. Both simple DP and DP with UE stage displacements were simulated using
large displacement FEA with displacement (hollow points) and force (solid points) control on the
final stage. The DP results are compared to models presented in literature (LD DP Theory) [25].

The controlled force FEA results are shown as the solid marks, while the controlled displacement FEA
results are shown as the hollow marks, in order to enable easy comparison of the values. The force and
displacement control diverge slightly at the large displacement, likely due to stage warping. The DP bearing
results are compared to the literature (LD DP) analysis. The DP with UE shows a significantly higher dropoff

scale (=15 vs =1.7), clearly indicating the removal of the underconstraint in the DP bearing.

8. Conclusions

We have demonstrated an improved flexure linkage design for selectively removing the
underconstraint in a DP linear flexural bearing. Detailed models are provided for the small displacement
behaviors as well as dynamics. The new design reduces many of the problems associated with existing
solutions, such as static/dynamic performance degradation, increased footprint, and design coupling, all of
which limit the applicability of underconstraint elimination designs in flexural bearings. The new nested UE
linkage design will enable wider use of the UE concept as well as improving device performance where

replacing existing UE designs.



The modified linkage is shown to work within 5% error of the small displacement predictions
generated by analytical models described in this paper. The models and LDES figure-of-merit provides a new
tool for designing large displacement bearings, and can be applied to other UE designs. The linkage is
successful at selectively boosting the stiffness (134x) and resonance (11x) of the translational DOF of the
intermediate stage without significantly impacting (<12%) the main translational DOF of the final stage. This
design topology is readily implemented in existing structures owing to its compact structure and well modeled

performance.
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